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Characterizing transition‑metal 
dichalcogenide thin‑films using 
hyperspectral imaging and machine 
learning
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Adam Schwartzberg4, Shaul Aloni4* & Alex Zettl1,2,3*

Atomically thin polycrystalline transition‑metal dichalcogenides (TMDs) are relevant to both 
fundamental science investigation and applications. TMD thin‑films present uniquely difficult 
challenges to effective nanoscale crystalline characterization. Here we present a method to quickly 
characterize the nanocrystalline grain structure and texture of monolayer  WS2 films using scanning 
nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our 
analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, 
and system‑dependent methodology traditionally used to analyze spatially resolved electron 
diffraction measurements.

Transition-metal dichalcogenides (TMDs) display emergent properties when reduced to single, two-dimensional 
(2D) layers. A transition from indirect to direct band  gap1,2, the emergence of charge density  waves3,4 an increase 
in  mobility5–7, and the presence of valley  polarization8–10 are a few of the important properties that are manifested 
in the monolayer limit.

Polycrystalline TMD thin films can be grown at wafer scale and lend themselves to  scalability11,12. These films 
have a high density of intrinsic grain boundaries and other defects that can influence physical properties and 
drive exotic correlated electron effects and emergent  phenomena4. In this communication, we characterize large 
area polycrystalline thin-films of  WS2 using scanning nanobeam electron diffraction, also called four-dimensional 
scanning transmission electron microscopy (4DSTEM) to identify the local crystalline texture and structure. We 
employ advanced multivariate statistical analysis (MVA) techniques to rapidly extract pertinent information, 
namely the grain structure of the  WS2 films, from the complex, high-dimensional 4DSTEM data.

WS2 films are grown directly on electron transparent SiN membranes, resting on Si supports, using a previ-
ously described  technique13 . Samples are prepared by depositing a coating of 10 nm of  SiO2 on the SiN mem-
brane, as well as the back and edges of the support window using plasma-enhanced atomic layer deposition (PE-
ALD). This provides an ideal growth substrate on the electron transparent window and protects the Si support 
frame from chemical conversion during subsequent steps. 2 nm of  WO3 is deposited onto the substrates using 
PE-ALD. The metal-oxide precursor is converted to  WS2 in a dry (< 10 ppm water) tube furnace at 800 °C using 
 H2S as a chalcogenization agent.

In a 4DSTEM experiment (Fig. 1a), we acquire diffraction data over a wide area of the  sample14–16. This is 
in contrast to traditional dark-field (DF) TEM imaging, where a physical aperture is placed in the diffraction 
plane of the instrument at the location of a Bragg spot, resulting in an image formed by Bragg scattered electrons 
that have passed through the aperture. DF-TEM characterization uses a series of aperture images, acquired at 
several aperture positions, to construct a map of the spatial distribution of the crystalline grains in a  sample17,18 
. In contrast, 4DSTEM simultaneously acquires all possible aperture positions, including those that do not fall 
directly on a Bragg peak.
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Figure 1b shows a conventional STEM image of a  WS2 thin-film acquired using an annular dark field (ADF) 
detector. The contrast in this image indicates differences in thickness, mass density, and local crystallography of 
the sample. The bright regions are the thin film, the dark regions are voids, and the very bright spots are regions 
of contamination. The sample presumably has a distribution of grain sizes and orientations, but this is not directly 
apparent from the STEM image of Fig. 1b.

We now investigate the same  WS2 film via 4DSTEM. Our attempts to study crystallinity and order in these 
films using atomic resolution STEM failed to provide satisfactory results due to the 20 nm thick SiN support and 
significant beam damage to the  WS2 monolayers. Increasing the probe size, thus reducing the STEM resolution, 
allows a reduction of the electron flux below the damage threshold while collecting information about crystal-
line order through spatially resolved diffraction patterns. Furthermore, while the quality of HRSTEM results 
are affected by contamination, diffraction patterns that are used in this 4DSTEM study are relatively insensitive 
to amorphous contamination spots seen in Fig. 1b.

The red circles in the inset of Fig. 1b correspond to approximate positions of the probe during the 4DSTEM 
mapping. Figure 1c shows a visualization of the associated raw diffraction pattern data. Each red box in Fig. 1c 
presents spectral data collected from the corresponding spatial pixel (red circles) in Fig. 1b. It is apparent that 
each diffraction pattern has a mixture of two main features: sharp, bright spots arranged in an approximately 
hexagonal pattern arising from Bragg scattering from the crystalline planes of the thin-film and a diffuse com-
ponent with approximate azimuthal symmetry that arises from the amorphous support substrate (the highly 
saturated central spot from unscattered electrons contains no useful information and has been masked in Fig. 1c).

The data in Fig. 1c hint at differently oriented crystallites (i.e. domains) with hexagonal (sixfold) symmetry 
within the sample. However, the true rotational symmetry and detailed domain structure are not easily individu-
ally identified and assigned by eye. In fact, the rotational symmetry in this specimen is not sixfold at all (MVA 
analysis reveals the domains have threefold crystalline symmetry). This illustrates the general difficulty of directly 
visualizing or assigning unambiguous meaning to higher dimensional data, particularly 4DSTEM data sets.

Figure 2 shows the results of a traditional analysis of the 4DSTEM data. Bragg peaks are detected in 10 ran-
domly chosen diffraction patterns using difference of Gaussian (DoG) blob detection. The detected blobs are 
extracted and averaged together to create an exemplar for the diffraction spots, which is then used as a template. 
Bragg peaks are detected in each diffraction pattern of the 4DSTEM data using cross-correlation matching of 
the template. This preliminary set of diffraction peaks is enhanced by removing any matches that fall outside of a 
well-defined range of reciprocal space radii (3.43  nm−1 ≤ q ≤ 3.94  nm−1), corresponding to the in-plane reciprocal 
lattice constant of  WS2  (q0 = 3.67  nm−1). The image shown in Fig. 2 is generated by drawing lines corresponding 
to the orientations of all Bragg peaks at each spatial pixel. The color scale indicates the angle, in degrees, of each 
Bragg reflection (modulo 60 degrees).

Figure 2 indicates that the specimen is comprised of many small grains with lateral sizes on the order of 
ten nanometers. The majority of the domains do not overlap, but there are regions on the sample with multiple 
crystallographic orientations at a single spatial location. The result presented in Fig. 2, while striking, is time 
consuming to construct and the data analysis relies on a priori knowledge of the crystal structure, implying 
that the methodology is not necessarily generalizable to other systems. Furthermore, even though the image 
presented in Fig. 2 has a significant reduction in size and dimension compared to the original data set, there is 

Sample
SiN

Si

CCD Camera

Scanning 
Probe

200 nm

a b

200 nm

c

Figure 1.  (a) In a 4DSTEM experiment, a small convergence angle probe of high-energy electrons is rastered 
across a thin sample suspended across a supporting frame (typically with a thin, electron transparent window). 
A CCD camera in the back focal plane records the electron count (reflecting the diffraction pattern) at each 
probe location, thus measuring the local crystallography of the sample with nanometer scale resolution. The 
films used in this study are synthesized by converting  WOx films deposited directly onto SiN TEM membranes. 
(b) Annular dark-field (ADF) STEM image of a  WS2 film. The blue box (inset) is a zoom-in (7 × magnification) 
for the small blue square area from the center of the image. (c) 64 representative diffraction patterns acquired 
from the  WS2 sample at the spatial locations indicated by the red grid in (b) The diameter of the red circles in 
(b) indicate the approximate probe size. In (c), each red box represents a spatial pixel of size 2 nm sampled by a 
2.7 nm probe. The field of view of the diffraction patterns in the red boxes is 10.8  nm-1.
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still too much information density to allow the facile extraction of the most relevant properties of the system 
under investigation (e.g. the precise distribution of grain sizes and orientations).

MVA techniques are extremely useful for tackling the problems of dimensional reduction and information 
extraction from complex data  sets19–24. These statistical techniques result in a simplified representation of high-
dimensional data consisting of a small number of low dimensional components which convey the general trends 
in the original data set. Some preliminary attempts have been made to approach 4DSTEM analysis using MVA, 
with varying degrees of  success24,25. With this in mind, we apply MVA methodology, using the approach outlined 
in Fig. 3. Prior to MVA decomposition, the data are pre-treated. Many MVA techniques are highly sensitive to 
small shifts and outliers in the data, which can either be a blessing or a curse. In order to minimize artefacts in 
the MVA output, the data are first aligned (there are small shifts in the diffraction patterns recorded at different 
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Figure 2.  Visualization of grain structure in a  WS2 thin film. Peaks are detected in the diffraction pattern 
acquired at each spatial location of the 4DSTEM data. The angle of each peak is extracted and used to generate 
the colored lines shown in the figure. The color scale indicates the angles of each line, modulo 60 degrees. The 
image field of view is 200 nm.
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Figure 3.  Flowchart for MVA workflow of 4DSTEM data. Red items denote spectral pixels and green denote 
spatial pixels. Rectangular boxes are operations and ovals are data.
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spatial pixels) and outliers are removed (e.g. cosmic rays result in “hot pixels” and the intensity from the central 
beam is both highly saturated and much greater than the intensity from scattered electrons).

The shifts between diffraction patterns are calculated by cross-correlation of the central beam followed by 
interpolation of the data to bring it into registration. The cross-correlation is enhanced by applying a noise reduc-
ing Gaussian filter followed by an edge-finding Sobel filter to the data before calculation of the cross-correlation 
 coefficient26.

Hot pixels are removed using a 3 × 3 median filter and the intensity distribution from the central beam is 
masked with a circular disk. The final step of data pre-treatment is rebinning each diffraction pattern, making 
the size of the data more manageable and reducing the computation time for subsequent steps.

The first step of the MVA portion of the data analysis workflow is to decompose the data into a new basis using 
principal component analysis (PCA)20,27 . The Principal Components (PCs) are orthogonal and describe which 
parts of the data contain the most variance. The first PC accounts for the most variance in the data, the second 
PC accounts for the second most variance, and so forth. The PC basis is constructed from the data covariance 
matrix, C(k) , given by:

D(x, k) , the as-acquired data set, is a function of two spatial directions ( x ) and two spectral dimensions ( k ), 
D(k) is the mean over the spatial dimensions, and T denotes the matrix transpose. The PC basis vectors, Pα(k) , 
are the eigenvectors of C(k) . In the PC basis, the data are represented as:

where aα(x) are the spatially varying weight coefficients and N is the dimension of the raw data. N is either the 
total number of spatial pixels or total number of spectral pixels, whichever is smaller. Traditionally, the weights 
(which, for the data discussed here, are real-space images) are called the PC loadings, and the PCs (which, for 
the data discussed here, are diffraction patterns) are called the PC factors.

Figure 4 shows the primary features of the PCA decomposition. The first several components (1–5) are the 
most important and they indicate clear spatial structure. We observe a rotationally symmetric component, related 
to the mean response of the sample, as well as azimuthally varying ring-shaped components which describe the 
intensity of the Bragg spots throughout the sample. The next components (15–19) have less clear spatial structure, 
but decidedly more complex spectral structure; these components describe complicated intensity variations of the 
diffuse background. Components 50–54 have no discernable spatial structure and an intricate spectral structure 
that has no immediately clear meaning. The final components (500–504) have no structure either spatially or 
spectrally and show the descent of the components into random noise.

A fundamental assumption of PCA is that a data set can be described to a high degree of precision by retain-
ing only N´ ≪ N components. It is assumed that the most important parts of the data (those with the highest 
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Figure 4.  Results of principal component analysis (PCA) for polycrystalline  WS2. Selected k-space PCA factors 
(analogous to diffraction patterns) above their associated real-space PCA loadings (analogous to images) are 
shown above. Similar to Fourier decomposition, the data are expressed as a linear combination of a new basis. 
The information basis describes the variance of the data. The first member describes the highest variance, 
the second member the second highest variance, and so on. As the basis component number increases, the 
k-space PCA factors and associated real-space PCA loadings move from describing the intensity of the primary 
diffraction spacing (components 1–19), to describing the intensity of scattering from the amorphous support 
substrate (components 15–54), to finally the noise of the detector (components 500–504). The field of view for 
each PCA factor and loading is 10.8  nm-1 and 200 nm, respectively.
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variance) reside in the earlier components, while the later components contain primarily high-frequency noise, 
similar to Fourier decomposition and compression; inspection of Fig. 4 suggests that this assumption is valid. 
In this case, the reconstructed model of the data, MPCA , is given by:

The PCA components are orthogonal and thus do not necessarily describe physical processes. In order to 
decompose the PCA components into a new basis that more accurately reflects the physical reality of the sample, 
we employ independent component analysis (ICA) unmixing to perform blind source separation (BSS) of the 
spatial PCA  loadings28–30.

BSS assumes the conjecture that if signals are from distinct physical processes, those signals will be statisti-
cally independent. The crux of the method is the reasonable (but logically unwarranted) assumption that this 
conjecture can be reversed; namely, BSS assumes that if signals are statistically independent, then they originate 
from different physical processes.

Two signals, X and Y, are uncorrelated if <XY> = <X><Y> where the brackets denote the expectation value. 
Two signals are statistically independent if <XpYq> = <Xp><Yq> for all positive integers p and q. Statistical inde-
pendence is related to correlation but is a stronger condition. For example, the x and y coordinates of a body in 
uniform circular motion are uncorrelated but not statistically independent.

The goal of ICA is to un-mix a set of components into a new basis that has maximal statistical independence. 
We use a subset of the PCA loadings (real space images) as the set of components for separation. In ICA, the 
model of the data is given by:

where MICA is the new ICA model which is again a function of two spatial directions x and two spectral dimen-
sions k, cα(k) are the spectrally varying weight coefficients, Iα(x) are the spatially varying independent component 
maps, and N′′ is the reduced dimension of the independent component space. Each new independent component 
is constructed as a linear combination of principal components,

where aβ(x) are the principal component loadings and wαβ are entries of the mixing matrix. The FastICA 
 algorithm31 is a reliable method to efficiently determine the mixing matrix, which gives the set of independent 
components that have maximal statistical independence from one another.

After the mixing matrix has been computed using FastICA, the complementary k-space independent com-
ponents cα(k) are determined by:

The independent components of Eqs. (5) and (6) underpin the model that emerges from the original experi-
mental data, and as such provide a method to rapidly examine the major features of a large, high-dimensional 
data set.

One of the biggest challenges to utilizing MVA is the determination of the number of components to keep for 
the final reconstruction (N′). Figure 5 outlines several metrics for selection of N′. The PCA Scree plot (Fig. 5a) 
shows what proportion of the total variance each component adds to the data. Inspection of Fig. 5a reveals that 
there are four distinct regimes of components, denoted by the vertical colored lines. The first component alone 
accounts for nearly 95% of the total variance in the data (left of the red line). The curve defined by the components 
in the second regime (left of the green line) has a distinct shape, and each component accounts for between ∼ 
0.1–% of the variance in the data. The remaining two regimes (left and right of the blue line) appear as a smooth 
curves with an elbow around 500 components. These values (1, 10 and 500 components) are useful trial values 
of N′ for inspecting general trends in the PCA decomposition.

The integral of the Scree plot (Fig. 5b) shows how much each component adds to the cumulative variance, 
and is a useful metric for determining the final number of components in a decomposition. A common method 
for choosing N′ is to keep all components below an arbitrary threshold in the cumulative variance plot or the 
Scree plot. Figure 5b shows three different choices of cutoff, the knee of the curve (red), 99% of the total variance 
(green), and 99.9% of the total variance (blue). In this plot, the vertical lines indicate the final output dimension 
and the horizontal lines indicate the choice of threshold.

The mean square reconstruction error (MSE) is given by:
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Here, �α are the eigenvalues of the data covariance matrix (C), Nx and Nk are the number of spatial and 
spectral pixels, D is the data set, and MPCA is the reconstructed PCA model. The last expression in Eq. (7) can 
be quickly calculated for all values of N′ and can be used to rapidly determine a value of N′ based on the MSE. 
PCA decomposition can be used for lossless data compression and storage when N′ is chosen such that the root 
mean square reconstruction error (RMSE) is equal to the noise floor of the  measurement20. The resulting rep-
resentation of the data has increased signal to noise and decreased data size with the same information content. 
Figure 5c shows the RMSE as a function of N′, calculated using Eq. 7. Figure SI2 shows the computation time 
for PCA decomposition as a function of output dimension. The information in Figs. SI2 and 5c can be used to 
determine a compromise between runtime and information loss.

We use intuition gained from the PCA Scree plot to choose the number of components for the ICA input 
(N′) and output (N′′). We choose N′ = 500 based on the second knee in the PCA scree plot (marked with a blue 
line in Fig. 5a). Figure 6 shows the results of ICA unmixing of spatial components using 498 PCA inputs and an 
output ICA dimension of 49. Similar to PCA, the choice of ICA output dimension has to include the majority 
of information in a data set and will vary from experiment to experiment. The ICA output dimension can be 
chosen by varying N′′ until the final analysis reaches the desired degree of accuracy (see Fig. SI3). The first and 
eighth PCA components are both azimuthally symmetric and are removed from the analysis to increase contrast 
in the relevant final ICA outputs, described below.

The ICA components display several major attributes. Most striking, is the presence of distinct crystalline 
grains with three-fold rotationally symmetric diffraction patterns, shown in Fig. 6a (k-space components, top 

Figure 5.  Determination of number of PCA components using scree plot and reconstruction error. The internal 
structure of the PCA scree plot, shown in panel (a), shows four regimes of components, delineated by the 
red, green, and blue vertical lines. The colored lines in the cumulative PCA scree plot in panel (b) show three 
(arbitrary) cutoffs for dimensional reduction, listed on the figure. Panel (c) shows the RMS reconstruction error, 
along with the noise floor of the detector.

K-Space 
Components

Noise Components(b) (c)Signal Components 

Real Space 
Components

(a)

Figure 6.  ICA unmixing of PCA components. The k-space components (top sub-panels) and real-space 
components (bottom sub-panels) are sorted into two categories of signal (a) or noise (b). The signal components 
appear as three-fold symmetric diffraction patterns in k-space and a collection of small crystalline grains in real-
space. The color scales for the real-space and k-space components are shown in (c).
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subpanels). The spatial distribution of each unique grain type is shown in the associated real space component 
(bottom subpanels).

The first noise component in Fig. 6b, shows the mean response of the sample under the electron beam. The 
majority of the noise components appear as spatially homogeneous, illustrated by most of the bottom subpanels 
of Fig. 6b, with no apparent physical meaning other than instrumentation noise. Finally, we find rare components 
in Fig. 6b that are not spatially homogenous and have hexagonal diffraction patterns with approximate two-fold 
rotational symmetry. We attribute these components to describing differences in tilt parallel to the beam.

The model that has emerged from ICA unmixing is that the sample is largely composed of distinct crystalline 
grains, each with three-fold rotational symmetry consistent with the 1H phase. Although our choice of N′ and N′′ 
can be argued to be insufficient for a general case, doubling the number of PCA inputs and/or ICA outputs does 
not significantly affect the outcome shown in Fig. 7. Importantly, this three-fold symmetry, a key physical attrib-
ute of monolayer  WS2, is not readily apparent from the raw data and has only emerged after MVA processing.

To extract the details of the grain size and rotational orientation across the  WS2 specimen, we employ image 
featurization (using Hu image  moments32) and a clustering algorithm (affinity  propagation33) to automatically 
sort the components into groups that have similar spatial features and spectral symmetry. This clustering analysis 
is applied to the featurized IC diffraction patterns, and the same grouping is then applied to the corresponding 
IC spatial images.

We use standard thresholding and particle analysis methods to generate histograms of the grain sizes and ori-
entations (Fig. 7b,c) and a rotational orientation grain map (Fig. 7a). Spatial pixels with no appreciable intensity 
from a crystalline component are assigned a special value and colored black. From the grain area distribution 
we see that the CVD synthesis method used to produce the  WS2 films favors small grains (∼10  nm2), but larger 
ones are also present up to approximately 100  nm2. We also find from the diffraction patterns that there is no 
preferred orientation for the crystalline grains.

In order to assess the efficacy of our MVA methodology, we compare the results using MVA to similar results 
obtained using traditional analysis  methods34. Figure 8 shows both results side by side. The range of angles for the 
grain map using MVA has been reduced to 60 degrees for a fair comparison (hence Figs. 7a, 8b) are very similar, 
but not identical). We see that although the agreement is not perfect, the two maps have a high level of similar-
ity, confirming that our MVA methodology is a useful tool for quickly assessing the approximate distribution of 
sample parameters in a high dimensional data set.

In conclusion, we present an MVA data analysis pipeline applied to 4DSTEM characterization of polycrystal-
line WS2 monolayer films. We demonstrate that the MVA approach is able to quickly parse complicated, high-
dimensional 4DSTEM datasets into easily digestible information, providing immediate feedback during data 
acquisition and supplementing traditional model driven scientific inquiry. The PCA/ICA approach described here 
requires no physical assumptions about the sample, however the resulting components are often self-validating by 
displaying physical features describing the system. Perhaps, the most valuable feature of this analysis framework 
is the fact that it can guide the refinement of computationally intensive physical models and analysis frameworks 
used to fit or model the data for deep understanding.

Methods
Samples. Polycrystalline  WS2 films are obtained via  WO3  conversion13. 2 nm of  WO3 is deposited using ALD 
onto 30 nm thick electron transparent Si3N4 TEM windows. The  WO3 is then converted to  WS2 by flowing  H2S 
gas over the films at elevated temperature.
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Figure 7.  Results of MVA grain size/orientation analysis for polycrystalline  WS2. The image in (a) shows the 
spatial distribution of distinct crystalline grains, with the color scale indicating the crystallographic orientation. 
The black regions are voids where no crystallographic component has appreciable value. The histogram in 
(b) shows the distribution of grain areas, peaking at 10  nm2, and dropping to near zero at 150  nm2. The grain 
orientation angle distribution is shown in (c). The orientation is defined by the angle of the most intense peak of 
the k-space component, modulo 120 degrees (due to the three-fold symmetry of the underlying 1H lattice). The 
distribution is approximately flat, indicating no preferred grain orientation.
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4DSTEM imaging. 4DSTEM data are collected using an FEI Titan 80–300 operated at an acceleration volt-
age of 200 kV. Electron diffraction patterns are acquired at 30 frames per second using a 14 bit Gatan Orius 830 
CCD Camera. A standard FEI C2 aperture (10 um) was used to define the 2.7 nm diameter electron probe with 
a convergence angle 0.6 mrad and dose rate of 109  e−/Å2 sec. The map is acquired over a square 100 spatial pixels 
per side with a step size of 2 nm between pixels.

Determinant of Gaussians (DoG) Blob detection. The Determinant of Gaussians (DoG) blob detec-
tion method is a standard tool for detecting local peaks in images. First, a series of Gaussian blurs with increasing 
standard deviations are applied to an image. The difference between successive images in this series is taken and 
spatial pixels that display maxima (as a function of Gaussian blur standard deviation) are identified as blobs. For 
the data presented in the manuscript, 6 standard deviations were used between 2 and 10 pixels.

Clustering analysis. For the input of the clustering analysis we first binarize each diffraction pattern using 
the Otsu method. Then we use the Hu image moments of the binarized diffraction patterns as the feature vector 
for clustering analysis. Hu moments are invariant under translation, scale and rotation and therefore sort images 
into groups with similar  symmetry32. The feature vectors are given to scikit learn’s affinity propagation algorithm 
which finds the optimal number of clusters and assigns each input into a  cluster33,35.

Particle analysis. We use the IC images shown in Fig. 4a as the input for the analysis. First the images are 
thresholded using the Otsu method. We then perform a binary closing operation to remove grains smaller than 
two pixels and close holes within any given grain. Finally, we calculate the region properties of each grain using 
functions available in scikit image’s measure  package36.

Data availability
The data presented in the manuscript and analysis code that were used in this study are available from the cor-
responding authors upon reasonable request.
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